ONS Problem Set 6

Wednesday, January 10, 2018

Problem 1: Concatenation of amplifiers

Consider a fiber link of in total 300 km. Compare the link in terms of its noise figure if it is sub-divided into

- a) three equally distributed spans, i.e. an amplifier spacing of 100 km each,
- b) three spans with respective lengths of $L_1 = 140$ km, $L_2 = L_3 = 80$ km,
- c) three spans with $L_1 = L_2 = 80$ km, $L_3 = 140$ km
- d) four spans, each 75 km long.

Assume that each amplifier compensates the loss of the preceding fiber span and that the noise figure of all amplifiers is F = 6. Calculate the OSNR at the receiver if the launch power is 1 mW.

Problem 2: Wavelength-division multiplexing (WDM)

- a) What is WDM?
- b) What is an optical frequency grid? Assuming a 100 GHz grid standard (ITU-T G.694.1), what would be the benefit of switching from a 10 Gbit/s data signal to a 40 Gbit/s data signal in each grid?

Problem 3: Polarization-Mode Dispersion (PMD)

- a) What is PMD? Do you expect PMD in an ideal single-mode fiber?
- b) Assume an optical pulse is incident into a fiber as shown in Fig.1. We assume a nonideal fiber such that refractive index $n_x > n_y$ leading to a differential group delay $\Delta \tau$. Depict what the signal looks like at the output of the fiber.

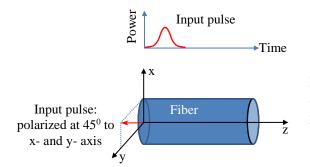


Figure 1. The impact of fiber birefringence on the pulse shape which has equal x- and y- polarization components.

c) Assume you can tolerate a mean differential group delay $\langle \Delta \tau_{link} \rangle$ that is 10 % the symbol period of your signal. Complete Table 1 using the parameters given.

Data rate (Gbit/s)	$<\Delta \tau_{link} > (ps)$	$L_{ m line}$ (km) [for old legacy fiber with $D_{ m PMD} = 0.5~{ m ps}/\sqrt{{ m km}}$	$L_{ m link}$ (km) [for newer fiber with $D_{ m PMD}$ = 0.02 ps/ $\sqrt{ m km}$]
10			
40			

Table 1. Transmission reach with different fibers and data rates

For questions and suggestions on the ONS tutorial, please contact:- 1 -Juned N. Kemal, Bldg. 30.10, Room 2.33,Mosaddek H. Adib, Bldg. 30.10, Room 1.23,E-Mail: juned.kemal@kit.eduE-mail: md.adib@kit.edu